

Soils of the Mackenzie District

- 'Pallic' (rainfall < 700mm) or 'Brown' (Rainfall > 1000 mm) soils
- Formed form glacial till or out wash (Greywacke/Schist), and loess
- Moraines near the lakes e.g. 'Tekapo' (500-800 mm Rainfall) or 'Cass' (1000-1500 mm Rainfall) soils
 - > 40-70 cm loess over till
- Mostly glacial outwash plain/terraces in the central Mackenzie Basin e.g. 'Fork' and 'Mackenzie' soils
 - Shallow stony soils

Soils of the Mackenzie District

Tekapo moraine

'Tekapo' soil

'Fork' soil

Soils are variable over short distances!

Soil Acidity (H⁺) – Formation and Issues

- A natural process soils 'weather' (develop over time)
 - > Older soils = more weathering = higher acidity (lower pH)
- Acidity develops by:
 - Leaching of 'base' ions (+climate/rainfall)
 - > H⁺ ion release by plant roots
 - Microbial activity (organic acids formed)
 - Al hydrolysis when aluminosilicate soil minerals are weathered
 - > Elemental S fertiliser
- Many H.C. soils have low pH & can be extremely variable down the profile – difficult to manage!

THE Issue: Aluminium Toxicity in Legumes

- Lower soil pH (more acidity) = higher Exch soil Al
- Legumes particularly sensitive to soil Al
 - > Some species more that others e.g. Lucerne
- Soil Exch Al above 3 mg/kg can cause problems
 - ➤ Definate toxicity at 10 mg Al/kg & above



THE Issue: Aluminium Toxicity in Legumes

- Can affect plants severely
 - > Root damage
 - ➤ Substantial ♥ in rooting depth (depending on Al location in soil profile)
 - ➤ in accessing soil moisture (more drought prone)
 - ➤ **\Psi** in nodulation and N fixation in legumes
 - ➤ utrient availability
 - ➤ Ψ yield & persistence

Aluminium Toxicity - Root Damage

Wheat (Al 5 mg/kg, pH 5)

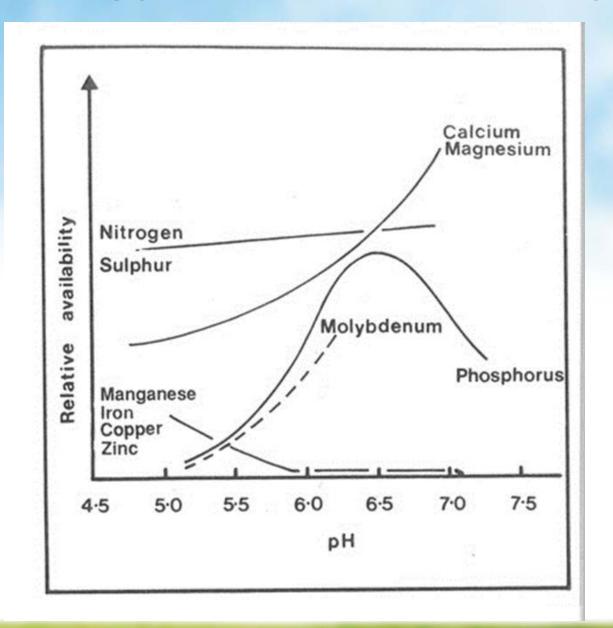
Pea
Roots dipped in Al Solⁿ at arrow

Lucerne - Horizontal root growth

Glenmore Station Tekapo

Central Canterbury High Country

Lucerne: Lees Valley, Nth Canterbury


Canterbury Plains

Central Canterbury High Country



Soil pH also strongly affects nutrient availability for plants

RESULTS

Glenmore Station

Sampl	e		рН	Exch Al (mg/	kg)				
(Nativ	e, 0 Lime)								
GMO (0-20 cm		4.9	7.4					
GMO 2	20-40 cm		5.1	7.1					
GMO 4	40-60 cm		5.1	8.9					
GMO (60-80 cm		5.3	9.7					
GMO 8	80-100 cm		5.3	8.0		2011			
						<u>2011</u>	<u>Lime Rat</u>	<u>te Trial:</u>	
Lime	Soil	рН	Olsen P	Sulphate S	ExchCa	Exch Mg	Exch K	Exch Na	Exch Al
(t/ha)	depth		(mg/L)	(mg/kg)	(QTU)	(QTU)	(QTU)	(QTU)	(mg/kg)
	(cm)								
	0-7.5	5.0	13.7	18.7	5.7	15.7	6.3	3.3	5.0
0	7.5-15	5.3	-	-	-	-	-	-	5.0
	0-7.5	5.5	36.0	23.3	10.0	12.3	4.7	3.3	2.2
3	7.5-15	5.2	-	-	-	-	-	-	5.9
	0-7.5	5.4	32.7	37.0	8.7	11.7	5.3	3.0	2.6

5

7.5-15

5.2

4.9

Omarama Station

Auger samples:

Sample	рН	Exch Al		
		(mg/kg)		
0-20 cm	5.7	1.8		
20-40 cm	5.7	2.1		
40-60 cm	5.7	3.5		
60-80 cm	5.8	4.2		
80-100 cm	6.0	1.7		

Sample	рН	Olsen P	Sulphate	Exch Ca	Exch	Exch K	Exch Na	Exch Al
		(mg/L)	S	(QTU)	Mg	(QTU)	(QTU)	(mg/kg)
			(mg/kg)		(QTU)			
0-7.5 cm	5.9	16	<1	3	34	9	8	1.4
7.5-15 cm	5.6	12	2	<1	19	4	6	7.1

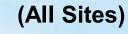
Ben Dhu Station (Omarama)

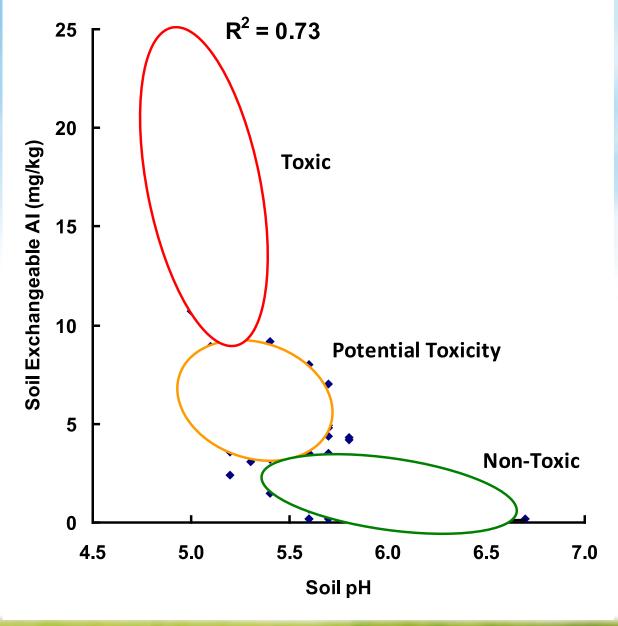
Auger samples;

рН	Exch Al (mg/kg)
5.2	12.2
5.6	4.5
5.6	2.5
-	- 1
5.3	8.4
5.4	9.2
5.6	8.0
-	-
5.9	0.7
5.5	1.9
5.6	1.8
-	-
	5.2 5.6 5.6 - 5.3 5.4 5.6 - 5.9 5.5

^{*}Note; Sample '1' = Deer fence block, '2'=Back block, '3'=Established Lucerne block

Armidale (Central Otago)


Auger samples;


*Note; Sample '1' = Hill block native, '2'= Flats native

Sample/Depth	рН	Exch Al (mg/kg)
1: 0-20 cm	5.0	10.7
1: 20-40 cm	4.9	21.3
1: 40-60 cm	5.1	22.6
1: 60-80 cm	5.1	19.6
2: 0-20 cm	5.6	<0.5
2: 20-40 cm	5.9	<0.5
2: 40-60 cm	6.5	<0.5
2: 60-80 cm	-	-

Relationship Between Soil pH & Exchangeable Soil Aluminium

Conclusions

- Soil pH is a critical issue in high country and is strongly related to levels of soil exchangeable Al
- Legumes can be strongly affected by Al toxicity
- It is critical to soil sample deep down the profile
 - > How does pH / Al change down the profile?
- Low pH/high Al below the topsoil may be <u>THE</u> key driver of species selection

How to Soil Sample a Block:

- Select the land 'surface' which best represents the block
- Dig at least 3 soil 'pits' across the block (the more the better),
 well spaced apart e.g. 100 m+
- Sample soil down the profile at 20 cm intervals (e.g. 0-20 cm, 20-40 cm etc) to 1m, or until you hit gravels, bagging them as you go
- Send to your soil lab (ARL or Hills) through your fert rep to analyse all samples for pH and Exchangeable Aluminium only
 - ➤ Should cost about \$30-40 per sample
- If you need to cut the cost, you can 'bulk' the samples i.e. all 0-20 cm samples go into the same bag...etc.....

QUESTIONS?

